角动量守恒原理(角动量定理和角动量守恒定律)
刚体定轴转动角动量守恒定律原理
刚体定轴转动角动量守恒定律原理如下:
定轴转动刚体的角动量守恒的条件是外力对刚体转轴的力矩之和为零。
刚体定轴转动的角动量:刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
刚体定轴转动的角动量定理:
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体腔兄绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
刚体定轴转动的角动量守恒定律:如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
注解
(1)单个刚体对定轴的转动惯量保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量I应等于初始时刻的角动量Im。,亦即Im=I,因而@=@。这时,物体绕定轴作匀角速转罩哪动。
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度@随转动惯量的改变而变,但两者之乘积I却保持不变,因而当变大时,@变小物圆码;变小时,@变大。如芭蕾舞演员表演时就是这样。
角动量守恒原理,详细的浅显易懂的,不要教科书式的回答。
角动量守拍谨恒实际就是力矩相等,比如八大行星离太阳越远,行星线速度越慢;其实就是力臂越长,行星受力越小。再比如一根绳子绑一个石头兜圈,同样的力气,绳子越长,石头越慢;反之,石头越快。这都和力气守恒,也是角动量守恒。再比如普通自行车后车轮,空转时很难停下来,是因为车轮各点两边力矩都相等,互相制约产生的角动量守恒,而其它摩擦力、阻力都很小,所以很难停下来。也因此汽车车轮有的上面有配重找平衡,为的是力矩相等,为的是角动量守恒。
即行星角动量守恒,也就是和太阳自转产生的能拦贺迅量守恒,也就是行星的力矩和太阳自转能量,相符相成,或者说达到平衡,简此使行星永恒围绕太阳公转。
角动能守恒原理
角动能守恒原理:质点对固定点的角动量对时间的微商,等于作用于该质点上的困亮力对该点的力矩。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。
角动量守恒转台的实验原理为绕定轴转动的刚体,当对转轴的合外力矩为零时,刚体对转轴的角动量守恒,此为刚体的角动量守恒定律。

根据角动量定理,内力不影响系统的总角动量,因此只要外力矩为零,则系统的角动量守恒。若物体为刚体,则表现为物体绕轴具有恒定的转速。若物体是非刚体,则体系的转速与其转动惯量成念尺桐反比。
地球受到的来自于月球和太阳的引力经过其质心,如果不考虑潮汐力的作用,这些力的力矩为零,因此地球的自转角动量守恒,由于地球近似是一个刚体,因此表现为地球具有恒定的自转角速度。
同样,地球受到太阳的引力是有心力,故它绕太阳的公转运动也满足角动量守恒的条件,这就是开普勒第二定律:地球的矢径在相等的时间内扫过的面积相等。不过地球的轨道不是圆轨道,故公转角速度不是恒定的。
芭蕾舞表演者脚下受力的力矩如果足够小,她的角动量是守恒的,在她张开手臂时,转速就减小,而收拢手臂则转速增加。
跳水运动员在空中飞翔过程中只受重力作用,作用点正好是人体的转动中仔坦心,因此力矩为零,故角动量守恒。
若他想在空中多翻几次筋斗,则必须在这有限的时间内,尽可能提高翻转角速度,因此他必须尽可能的缩成一团以减小自身转动惯量;而入水时又要尽可能竖直向下,减小摇摆,因此就伸直全身,将转速降到最低。
什么是角动量守恒
角动量守恒,又称角动量守恒定律是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变. dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.
根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
此原理多用于天文学,天体运行时自转不变.
注解:
(1)单个刚体对定轴的转动惯御橘量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量应等于初始时刻的角动量,亦即,因而.这时,物体镇让团绕定轴作匀角速转动.
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小滑粗;I变小时,变大.如芭蕾舞演员表演时就是这样.
(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
关于角动量守恒原理,角动量定理和角动量守恒定律的介绍到此结束,希望对大家有所帮助。
本文来源于互联网,不代表趣虎号立场,转载联系作者并注明出处:https://www.quhuhao.com/wzfl/53288.html


微信扫一扫