1. 首页 > 文章分类 > 生活百态

蝴蝶定理(蝴蝶模型的推导证明过程)

蝴蝶定理是什么

蝴蝶定理这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。

蝴蝶定理(ButterflyTheorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相乎厅交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足:1/MY-1/MX=1/MQ-1/MP,这对差数2,3均成立。岁庆隐

向左转|向右转

怎样理解蝴蝶定理

蝴蝶模型又称梯形蝴蝶定理,是指在一个梯形中连接对角线后形成四个三角形。梯形蝴蝶定理旅埋是一个平面几何中的重要定理,由于该定理的几何图形形状奇特,形似蝴蝶,所以以蝴蝶来命名。

梯形蝴蝶定理证明:

S1和S2的三角形是相似的,所以面积比=边长比的平方即a²︰b²。

S1和S4三角形同底等高,可知S1︰S4=OA︰OC,又因为S1和S2是相似三角形,相似比=a︰b,所以S1︰S4=OA︰OC=a︰b=a²︰ab;同理S1︰S3=a²︰ab。所以S1︰S2︰S3︰S4=a²︰b²︰ab︰ab。

蝴蝶模型公式推导过程:罩早

S1和S2的的三角形是相似的,所以面积比=边长比的平方即a²:b²。设梯形高为h,S3+S2=1/2,bh=S4+S2,所以S3=S4。物镇雀

设S4三角形高为h1(底为OB),可知S3:S1=S4:S1=OB:OA。因为S1和S2的的三角形是相似三角形,S4:S1=OB:OA=b:a,所以S1︰S2︰S3︰S4=a²︰b²︰ab︰ab。

梯形蝴蝶定理是一个平面几何中的重要定理,由于该定理的几何图形形状奇特,形似蝴蝶,所以以蝴蝶来命名。相似图形,面积比等于对边比的平方也就是S1:S2=a²/b²。

相关信息:

这个命题最早作为一个征解问题出现于公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。

小学奥数蝴蝶定理的内容是什么

蝴蝶定理(Butterfly theorem),是古典欧式平面几何的最精彩的结果之一。

这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。

定义

蝴蝶定理(Butterfly Theorem):设M为圆内戚桥弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为"坎迪定理",不为中点时满足:1/MY-1/MX=1/MQ-1/MP,这对2,3均成立。

蝴蝶定理(蝴蝶模型的推导证明过程)(图1)

定理历史

这个命题最早作为一个征解问题出现在公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。

这篇文章登出的当年,英国一个自学成才的中学数学教师W.G.霍纳(他发明了多项式方程近似根的霍纳法)给出了第一个证明,完全是相等的;另一个证明由理查德·泰勒(Richard Taylor)给出。

另外一种早期的证明由M.布兰德(Mile Brand)1827年的一书中给出。最为简洁的证法是射影几何的证法,由英国的J·开世在"A Sequel to the First Six Books of the Elements of Euclid"给出,只有一句话,用的是线束的交比。

"蝴蝶定理"这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。

1981年,Crux杂志刊登了K.萨蒂亚纳拉亚纳(Kesirajn Satyanarayana)用解析几何的一种比较简单的方数仔轿法,利用直线束,二次曲线束。

蝴蝶定理是古典欧式平面几何的最精彩的结果之一。这个定理的证法不胜枚举,至今仍然被数学热爱者研究,在考试中时有出现各种变形。

扩展资料:

验证推导

霍纳证法

过O作OL⊥ED,OT⊥CF,垂足为L、T,

连接ON,OM,OS,SL,ST,易明△ESD∽△CSF

作图法

从X向AM和DM作垂线,设垂足分别为X'和X''。类似地,从Y向BM和CM作垂线,设垂足分别为Y'和Y''。

定理推广

该定理实际上是射影几何中一个定理的特殊情况,有多种推广:M,作为圆内弦是不必要的,可以移到圆外。

参考资料:百度百科-蝴薯肆蝶定理

什么是蝴蝶定理

蝴蝶模型基本公式:AD:BC=OA:OC,蝴蝶定理扰举是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W·G·霍纳提出证明。

而“蝴蝶定理”这个名称最早出袭塌现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举缓禅碧,至今仍然被数学爱好者研究,在考试中时有各种变形。

END,本文到此结束,如果可以帮助到大家,还望关注本站哦!

本文来源于互联网,不代表趣虎号立场,转载联系作者并注明出处:https://www.quhuhao.com/wzfl/54044.html

联系我们

在线咨询:点击这里给我发消息

微信号:

工作日:9:30-18:30,节假日休息